Logic Concepts and Logic Programming

4.1 lntroductlon | | |

BES B RS E T ERBEEENBEBEEY BB DR BN BERBEBEBEE N g g aEnl

theory, model theory, and recursion theory. The field of logic is also concerned with 001':? | 4
such as the study of validity, consistency, and inconsistency. Logical systems should po*
properties such as consistency, soundness, and completeness. Consistency implies that 1§
the theorems of the system should contradict each other; soundness means that the mfercﬂc"’
shall never allow a false inference from true premises. If a system is sound and its. axmms ¢
then ‘its theorems are also guaranteed to be true. Completeness means that there ﬂ-l'e :
sentences in the system that cannot be proved in the system. s

o

www.Jntufastupdates.com 1

Logic Concepts and Logic Programming 103

1 this chapter, th o

nthnfi ‘;ne gl o Czn‘;(::l::gt‘sw?tiProposmonal calculus and logic are introduced along with four
B cxtended to first. :l proofs and deductions. The concept of propositional logic has
order predicate logic followed by the evolution of logic programming

yhich forms the basis of the logic :
/)) vy Programming langua i
en described in detail in the next chapter) (Kafshikgs. %%gg;led e

1.2 Propositional Calculus

B W N N M - W NN Moo
SHASENE RN OO NN e

_-pO_SIUO{lal calculus (1?(_3) refers to a language of propositions in which a set of rules are used to
ombine simple propositions to form compound propositions with the help of certain logical
perators. These logical operators are often called connectives; examples of some connectives are
ot (~), and (A), or (V), implies (—), and equivalence (<). In PC, it is extremely important to
nderstand the concept of a well-formed formula. A well-formed formula is defined as a symbol
r g\string of symbols generated by the formal grammar of a formal language. The following are
pme important properties of a well-formed formula in PC:

- ;The smallest unit (oran atom) Isconsmeredto bca wellformed forﬁiula,_,_ 3
. o If oris a well-formed formula, then ~« is also a well-formed formula.

- If ocand f are well-formed formulae, then (a A B), (o \% B), (o = B), and (¢ <->_.}3) ai_‘g alsowell-
BB foimed formiilae s (R iR Sl i e v e s e e R AR e

o BRI LT

| propositional expression is called a well-formed formula if and only if it_satiéﬁ_es the above
foperties. A | ' - '

$.2.1 Truth Table

A PC, a truth table is used to provide operational definitions of important logical operators; it
| f a formula. The logical constants in PC are true and false and
pectively in a truth table. Let us assume that A, B, C, ... are

tese are represented as T and F, res : : A, B,
mentioned logical operators are given in a truth

ropositioned symbols. The meanings of above-

" Table4.1 Truth Table for Logical Operators

R T A AAB AVB | AoB | A©B
i ; ’

T ; T F - T I T R T 3 .

— ..“.é i il iz e s AT F F

T F s N R

- RS TR T T F -

F ; Ty, ke - i

SR v— 5 i = . A L

www.Jntufastupdates.com 2

104 Artificial Intelligence -

The truth values of well-formed formulae are calculated by usmg the truth table aPPFOach
consider the following example. 17t *]

Example 4.1 Compute the truth value of o (4 V B) A (~B — A) using truth table approach.

Solution Using the truth table approach, let us compute truth values of (4 V B) and (~B - A) i] ,
compute for the final expression (4 V B) A (~B — A) (as given in Table 4.2). :

Table4.2 Truth Table for &

A B AVB ~B BoA I ?
T T T F T ;T]
T F T T T T ;
F P T F T ;Til
F E F T B F r%

J,;,H

Definition: Two formulae ¢ and f3 are said to be logically equivalent (= f3) if and onlyu |
truth values of both are the same for all possible assignments of logical constants (T or F)E '

symbols appearing in the formulae. ek % |

%Pﬁ"f" i

4.2.2 Equivalehce Laws | Ly ol '_

Equivalence relations (or laws) are used to reduce or simplify a glven well-formed fonnulatl
derive a new formula from the existing formula. Some of the important eqmvalence 1%
given in Table 4.3. These laws can be verified using the truth table approach.

Table 4.3 Equivalence Laws

Name of Relation ' Equivalence Relations
éonmutétive Law- AVB=BV A
AAB=BAA
Associative Law AVBVC=@VBVC
AABAC)=(AABAC
Double Negation ‘. T EY HEa
Distributive Laws | AV(BAC) = mvaqu
S - AABYVC)= mAmvaozf
De Morgan’s Laws =gy ~AVB)=~AA~B
~AAB)=~AV ~B

-

www.Jntufastupdates.com 3

Logic Concepts and Logic Programming 105

Table 4.3 (Contd.)

Name of Relation ; - Equivalence Relations
Absorption Laws AV(AAB)=A
AAAVB)=A

AV(~AAB)=AVB
AA(~AVB)=AAB

Idempotence ‘ AVA=A
. AANA=A
Excluded Middle Law AV ~A=T (True)
Contradiction Law : A A ~A = F (False)
Commonly used equivalence relations AVF=A
AVTET
AAT=A
AAF=F

A—>B=~AVB
A< B=(A—>B)AB—A)
=(AAB)V(~AA~B)

Let us verify the absorption law A V (A A B) = A using truth table approach as shown in Table 4.4.
. . Table 4.4 Verification of AV(AAB)=A

A B AAB AVAAB
T T T T
T F F T
F T F F
F F F F

We can clearly see that the truth values of A V (A _A' B) and A are same; therefore, these expres-

sions are equivalent.

s mposERBEANRBEAN

4.3 Propositional Logic
X EEEERE g R ETHEAERSE @

uaﬁmﬁm&'mmﬁm;.;ﬁﬁmmaeﬁ::mﬁéz;. .

Propositional logic (or prop logic) deals with the validity, satisfiability (also called consistency),
and unsatisfiability (inconsistency) of a formula and the derivation of a new forrm.lla using
equivalence laws. Each row of a truth table for a given formula ' 1s callfad 1t§ interpretation l.lllde:l'
which the value of a formula may be either true or false. A formula o 18 §a1_d to bef a'ra.r,frf:)logy if
and only if the value of « is true for all its'interpretations: Now, the vahfhty, sat1-st:1ab1¥1ty, and
Unsatisfiability of a formula may be determined on the basis of the following CODdlIElOIlS.

www.Jntufastupdates.com 4

106 Artificial Intelligence . .
o Aformula is said to be valid if and d;ﬂy if it is"ai_rfc':_ﬁfalqgjf_.- - '.'-f.' '.:;F.'
o A formula cris said to be satisfiable if there eXiSts at least one interpretation for which s true,

a oris said to be unsatisfiable if the v;ilue'of ais false under all interpretations.

o Aformul
r the following example to explain the concept of validity:

Let us conside
wing is a valid argument:

Example 4.2 Show that the follo
Ifitis humid then it will rain and since it Is humid today it will rain
Solution Let us symbolize cach part of the above English sentence by propositiony)

as follows:

A+ Itis humid .
B: Itwill rain

Now, the formula () corresponding to the given sentence:

Ifit is humid then it will rain and since it is humid today it will rain

may be written as
a:[(A—B)AA] — B

Using the truth table approach (as givenin Table 4.5), one can see that ¢ris true under all interpretatio;

hence is a valid argument.
Table 4.5 |~ Truth Table for [(A — B) AA] — B

A p - A-B=X) X AA=(Y) | Y B

T T SN et PRCEREI G G T

T ot — = S

F | T 1 F —
i

The truth table a i ' |
| 5 pproach is a simple and - i .
presenting an overview of 2 ple and straightforward metho ' il
for evaluating co ng;;‘;'ngf all the ff'uth values in a given situation gl?}?j 1; ?)_;.tremcl_\ ?q,;
lies in the fact that the si?cn;;insiitenc}’, or validity of a fonnul:a the l?flit;:;'ls anfcﬁlsi; H.];_-
SSboiins. thin et of tru table grows ex ¢ g VUG ion of this™
J th tabl . : ponentially, T : t
¢ will contain 2" entries. Moreover it);nayhs; " lfl:?l fgnnula C:;.‘;f
, it may be possible in some

1

all entries of
: a truth table are i
- n 1
becomes a futile exercise. ot required. In such situations, the construction of 2 "]
8 o e |

For example, if we h R sl
> ave to show th ' - TS |
truth table approach A0 ata formula o : (4 ' 4
. , th s aa:(AAB o st
values of ¢ for all 32 mf:_wretnged to:construct a table COH‘; CAD)—>(BV E) is valid lﬁ;
is false for 30 out of th ;P ctations. In this example, we gy TRl compu®,
i sl -..e IIIZ_Ientnes and is true for 2',3ntriel‘l::CT thgt the value of (4 AB‘:/}:
‘‘‘‘ S s g D SUUISS onlyh.Sincsiwe know that ¢

www.Jntufastupdatels.Cc.Jm.' o)

in which X = Tand Y=Fiti
. Hence, we are left to veri
n on the right side of

‘Natural deduction system

o Axiomatic system =

“ Semantic tableau method

- Resolution refutation method .

All these methods have been discussed in the following sections.

4.4 Natural Deduction System

CREaNERE nEDENRAEAEEED FHMEBEEARIDIAPERANANER BRI YR DO E 2SS
Natural deduction system (NDS) is thus called because of the fact that it mimics the pattern of
natural reasoning. This system is based on a set of deductive inference rules. Assuming that4,, ...,
A,, where 1 <k<n, are a set of atoms and o » where 1 <j<m, and B are well-formed formulae, the
inference rules may be stated as shown in the following NDS rules table (Table 4.6).

Table 4.6 NDS Rules Table

Rule Name | Symbol | Rule | Description

Introducing A | (I:A) IfA;, ..., A, then If4,, ..., A, are true, then their conjunction
A A .. A4, A, A ... AA,is also true.

Eliminating A (E:A) IfA;A ... A:4n then IfA, A ... AA, s true, then any 4; is also

A;(1<i<n) ~frue.
If any 4; (1 <i<n)is true, then4, V... V

Introducing V- |- (:V) - | Ifany4;(1<i<n) then

AV i VA, il Ay is also frue. e e
4 — ' . and
2 i 2 i i V ,A —-—)A, IfAlV VAn,AI‘—)fl.,Az-é./, 2
.Ehmmarmg Y G Ifqu V.'_;;.A t]ﬁ;‘lAl A, — A are true, then A 1s frue.
el n .. e A i S e A e I ——————— -

oo TS bl TS

' 1 - d
;) infer [1s If given that @}, 0, ..., and o, are frue an
fmiroducing — | @:=) | T fmlg tign' -(; i,, A ﬁn from these we deduce fthen oy A ... A
e i a, — P is also true.

— Bis proved

(Contd.)

www.Jntufastupdates.com 6

108 Artificial Intelligence

—

Table 4.6 (Contd.)
Rule Name | Symbol f- Rule Description
Eliminating — E:->) | If Ay > A A thenA IfA;, = Aand A, are true them
i Thls is called Modus Ponen rule |
Introducing & @ (&) | IfA; > A, A, > A then4, IfA — A, and A2 - A are true lhen A
wdoerA, A, is also true.
Elimination < | (E:) | IfA; & A, then IfA, <> A, is true then A A, and A,
A2 A A > A, A, are true
Introducing ~ I: ~) If from A infer Ay A ~A, If from A (which is tme) a ﬁcontradlmgnI .
is proved then ~A is proved proved then truth of ~A is also proved
Eliminating ~ (E: ~) If from ~A infer A} A ~A, If from ~A, a contradiction is proved the,
is proved then A is proved truth of A is also proved |

A theorerh in thé NDS written as from ¢, ..
deduced from a set of hypotheses {¢,...,

—

, o, infer B leads to the interpretation thd[rl
a,}: All hypotheses are assumed to be true in a g/

context and therefore the theorem [is also true in the same context. Thus, we can conclude t;

is consistent. A theorem that is written as infer fimplies that there are no hypotheses and fis;.
under all interpretations, i.e., B is a tautology or valid. Let us consider the following example:
show the proof using Natural deduction systems. The conventions used in such a proof i

follows:

K3 The ‘Descnptlon column consmts of rule 2 pplled on a subexpresmon m the proof hne
3 The second column con31sts the subexpressnon obtamed aftcr applymg an app (pnate rule.
. T he fi nal column consmts thc Ime numbcr of subexpressmns in the proof L e

ixample 4.3 Prove that A A (B'V C) is deduced from A A B. 4 : - | ‘

solution The theorem in NDS can be wrltten asfromA ABinferAA(BV C) in NDS. We can pros
heorem (Table 4.7) as follows: !

Table 4.7 Proof of the Theorem for Example 4.3

Description - Formula Comglﬂtf/
- Theoren- fromA A B infer AA(BV C) To be prove!
Hypothesis (given) AAB ATRL. 1
EA() A - | 2.
EA@D .. . B Sty gty |] gk
EV(3) BYC ' i 1
d

EAQ 4 AA(BVC) i oy

_”/

www.Jntufastupdates.com 7

Logic Concepts and Logic P'rogramming 109
If we assume that ¢ — Bis Irue, then e can concly

represented in the form of , theorem of NDg fromde that B is also frye

then we can conclyde the truth of ¢ ~ B. The oo % infer B and if we ¢

if is true. It can be
the deduction theorem i, NDS. S of this is also true,

an prove the theorem
Let us state formally
To prove 5 formula ¢, A A i ‘

. an — i t
from au, ..., o, infer g Conversely, if g, A - x B, it is su

fficient to prove a theorem
_ _ &, — B,is proved th
 ,, infer B is assumed to be proved. Rl

en the theorem from o, ...,

: - ol ;
Let us consider the followmg Example to show the use of deduction theorem.,

Example4.4 Prove the theorem infeyr (4—B)AB-) U-0).

n theorem. Further. to prove ‘A — C”, we will have to provea
sub-theorem from 4 infer C. The Proofof the theorem is shown in Table 4 8
Table4.8 Proof of the Theorem from (4 — B), (B— C) infer (A — C)
Description Formula ; Comments
Theorem _JromA— B, B - Cinfer 4 — C To be proved
" Hypothesis 1 A-B o 1
Hypothesis 2 B->C 2
Sub-theorem Jrom A infer C “3
Hypothesis A &l
Ei(1,3.0). . B :2
. 3
E:—>(2,3.2) - C
P d
Lo @):coty . A-C e

4.5 Axiomatic System

mmxa&s‘:m&aug&
MY HERENOE AR E N IR IO E R R Y DE RN
EnEBERRABEOY R 2.

g : i d one rule of deduction. Although
TI?[C. axio:maric system is baseil’V ;I{-l'u ?aze:hgt; rti;e::ﬁg;:g:nds]3]1; S e roatios @aﬂomatic systfantl,
minimal in structure, it is as pore often difficult and require a guess in selection of appriprlaz
th? e 'Of lfhe theDrem;»l atWO logical operators not (~) and implies (—) afle allowed g; :angly
Soaln T s e ot o gt il opeeton il e T LA e
formula. dlt. s?oult: (]:; m_}and —» using equivalence laws stated earlier. For example,

€xpressed in terms of ~

8
www.Jntufastupdates.com

110 Artificial Intelligence

ms, which are always true (or valid), and one ryJ;

iomatic Sy there are three axio _ , |
I iiommativ S92 re well-formed formulae of the axiomatic syste,, “i!;

modus ponen (MP). Here, &, ﬁ, and 7 a
three axioms and the rule are stated as follows:

Axiom1l a— (f—) | g

Axiom2 [a— (B V- (@~ B) = (@—7)]

Axiom3 (~a—~B)— (-) _
Modus Ponen Rule Hypotheses: o — P and & Consequent: B
Interpretation of Modus Ponen Rule: Givcn_that o — Band o are hypotheses (assumgg i
true), B is inferred (i.c., frue) as a consequent.

Let 3 = {as, ...} be a set of hypotheses. The.formula & is defined to be a deductive ¢,
quence of . if either o is an axiom or a hypothesis or is derived from o, where 1 <j<p i)
modus ponen inference rule. It is represented as {0y, ..., o,} |- o or more formally as ¥ |- i
is an empty set and o is deduced, then we can write |- ¢. In this case, & is deduced from g,
only and no hypotheses are used. In such situations, o is said to be a theorem. To illustra[e‘,l
concepts clearly let us consider the following example:

Example 4.5 Establish that 4 — C is a deductive consequence of {4 — B, B — C}, ie., {4+
B—C}|-A4—=O).

Solution ~ We can prove the theorem as shown below in Table 4.9.

Table 4.9 Proof of the theorem {4 - B,B > C}|- (4 —C)

Description ' Formula - Comments
Theorem - LR L {A—=B,B—C d4-0) . Prove
~ Hypothesis 1 N A—-B | 1
Hypothesis 2 B-C 9 B
Instance of Axiom 1 B0 >[4 B-O) T
MP (2,3) U530 :
Instance of Axiom 2 T HASB-O1 3 [A-B) S UG 5
“MP(4,5) - A S By S (A Oy A AT G Y
MP(L6) ", 0 AT T e T e e i i
A B o> g f Proved___/

Hence, we can conclude that 4 — C'is a deductive consequence of {A- B "By CF. G
£ 0t ! s bk ’- i ‘... : —’/

IDfed_uctz‘an Theorem Given that Y is a set of hypotheses and ¢rand B are well-formed f0Imuli
ﬁ is pr.oved from {2 U o}, then according to the deduction theorer'n,'-'(a 2 B)is p'roved frof
AJtemgtwely, we can write {3 U @} |- Bimplies ¥ |- (¢ — B). el

www.Jntufastupdates.com 9

Logic Concepts and Logic Programming 111
Converse of Deduction Theorem

The converse of the deduction theorem can be stated as: Given
2 |- (@—), then {3 U o) |- Bis proved. .

Useful Tips

The following are somff tips that will prove to be helpful in dealing with an axiomatic system:

o Ifais giv.en,'- then we can easily prove B — ofor anyiwell-formed forrlhulae':a_ aﬁd Bl
* If.a— Bis to be proved, then include ¢ in the set 0 '

gt f hypotheses 3. and derive 8 from the set {Z U
_ a] Then, by using deduction theorem, we can conclude that o5 B. ' :

Example 4.6 Prove |

-~A—>(A—> B) by using deduction theorem.

Solution - If we can prove {~A} |- (A = B) then usin

g deduction theorem, we have proved |- ~A"—
(A — B). The proof is shown in Table 4.10.

Table 4.10 Proof of {~A} |- (A — B)

Description - Formula - i Comments
Theorem) {~A}|- (A = B) Prove
Hypothesis 1 PR e 1
Instance of Axiom 1 : 34 ~A = (~B > ~A) 2
MP(1,2) & & (~B — ~A) 3
Instance of Axiom 3 (~B—> ~A)—> (A > B) 4
MP (3, 4) (A —>B) Proved

4.6 Semantic Tableau System in Propositional Logic

Bﬂﬁ&ﬁﬁﬁﬁﬁ&-ﬁ&ﬁﬁ%ﬁ#@Eﬁﬁ%%%&%&ﬁﬁ&ﬁ%ﬁ@ﬁﬁﬁE’f}i‘%?{i'%iﬂﬁéﬁé’gi«iﬁi‘}i&'ﬁé'ﬁ?{il&a’f

In both natural deduction and axiomatic systems, forward chaining approach is used for construct-
ing proofs and derivations. In this approach, we start proofs or derivations frorr} a given set (?f
hypotheses or axioms. In axiomatic system, we often require a guess fc?r :[he selection qf appropri-
ate axiom(s) in order to prove a theorem. Although the forward chamu}g appfoach is good for
‘theoretical purposes, its implementation in derivation§ and proa:)fs is difficult. Two other
ailpproaches-'may be used: semantic tableau and resolution refurat:qn methods; in both cases,
proofs follow backward chaining approach. In semantic tableau r_nethod, aset _of ruloes are .apphed
/ Systematically on a formula o'g a set of formulae in order to establish consistency or inconsistency.

Semantic tableau is a binary tree which is constructed by using semantic tableau rules with a
| formula as a root. These rules and building proofs using this method are discussed in detail in the

/ following subsection.

www.Jntufastupdates.com

10

HEnunm

112 Adificial Intelligence

4.6.1 Semantic Tableau Rules

The semantic tableau rules are given in Table 4.11 where ¢ and ﬁ are two formulae.

Table4.11 Semantic Tableau Rules for oand B

Rule No. ~ Tableautree - Explanation Q{
Rule 1 . aA B is true if both & and B are true . A tableau for a forn:.uula (9—’ A B)is
N B iica 6 : constructed by adding both a apg
| . B to the same path (branch)
b :
ﬁ W TYRRE R AR B T
Rule 2 | ~(@ A B) is true if either ~ccor ~f is true . A tableau for a formula ~(A)
' o ' constructed by adding two new path.
(A B) y g Paths
e Y ' one containing ~¢ and the other
~ ~B . o, o containing ~f8 -
Rule 3 oV Bis true if either o or Bis true ¥ A tableau for a formula (a'V f3)”j.s-
; : aV B constructed by adding two new paths
a/\ﬁ : : one containing ¢ and the other
containing 3
Rule 4 ~(oV: B) is true if both ~c @d ~B are true - A tableau for a formula ~(a V f) is
~aV B) ; - constructed by adding both ~a and
| s ~f to the same path
L~ \ 4
|
~B
Rule 5 ~~Q) i ; ! B
o G q) s truﬁ{e:i;n G.i5fruel i ¢'{. + A tableau for ~(~0) is constructed b\'
| adding o on the same path
o
Rule6 =~ i : e
ris o _ q_’ ﬁ is true then ~o V Bis rue A tableau for a formula a — Bis
| /a—_)ﬁ\ _ constructed by adding two new
~a B : 'Pa;hs one containing ~o and the
st . LSS ; | other containing f3 !
Rule7 . - T, _ n -
_‘ e 7. M@ — B) true then a A ~ ﬁ is rue A tableau for a formula ~(a— P)is
' ~(a - ﬁ) : 4
| N COIESltrllcted by addmg both o and ~ |
to the same path 5
e A

www.Jntufastupdates.com 11

Logic Concepts and Logic Programming 113
Table4.11 (Contd.)

[RuleNo. | _ Tableau tree
B2 e S e it Explanation
Rule 8 o> Bis true then (aAﬁ)V(NaANﬁ),-S -
e A tableau for a formula ¢ ¢» Bis
asf constructed by adding two new paths:
: ~| one containing ¢ A B and other ~
i . ! g er ~a A
s B | aA~p ~f which are further expanded
~(@e P
Rule 9 (@¢>) is true then (o A ~B)V (~aA Byis true A tableau for a formula ~(a > 8)
~(x e p) is constructed by adding two new
; paths: one containing & A ~f and
aA "'}3 _ ‘——a AB the other ~ A B which are further
expanded

Let us con31der an. example. to il_lustrate the method of constructing semantic tableau for a for-
mula. The convention used in this construction is self-explanatory. The first column consists of

rule number applied on line number. The second column contains the derivation of semantic
tableau and last column contains the line number.

Example 4.7 Construct a semantic tableau for a formula (4 A~B) A (~B— C).

Solution The construction of the semantic tableau for thé given formula (4 A ~B) A (~B — C) is shown in
Table 4.12. ' '

Table 4.12 Semantic Tableau for Example 4.7

Description Formula > Line number
Tableau root (AA~B)A (~B— () _ 1
|
2
Rule 1 (1)* AA'~B
~B—C 3
| | 4
Rule 1 (2) 4
| 5
~B
_ /\C 6
Rule6(3) - "‘("’IB) _ |
. B - v(open)
Rule 3 (6) |-
% (closed) {B,~B})

www.Jntufastupdates.com 12

114 Adificial Intelligenee :

Paths in a tableau tree extend from the root to the leaf nodes. There are two paths in the |
shown in Table 4.12 starting from the root to leaf nodes ending at B and C. It is observeg -
first path from root to B becomes closed because of the presence of complementary ato
~B, while the other path remains open.

lh,
mwl

The thumb rule to construct a semantic tableau is to apply non-branching rules (such as r, 5
and 7) before branching rules.

4.6.2 Satisfiability and Unsatisfiability

Before we proceed any further, it is important to become familiar with certain terms thy . are,
in the study of a tableau. For this, consider ¢ to be any formula (Kaushik S 2002).

B . A path 1s satd to be contradtctory or closed (ﬁmshed) whenever complementary atoms appear gy
. same path of a semanuc tableau ThlS denotes mconsmtency

e If all paths of a tableau for a given formula o are found to be closed, it is called a contradiy,
tableau. This indicates that there is no interpretation or model that satisfies .

A formula is said to be sansf able 1f a tableau with root otis not a contradlctory tableau, thatj;.
- has at least one open path. We can obtam a model or an mterpretatlon under which the formulaa|

evaluated to be true by asmgnmg T (true) to all atomic formulae appearmg on the open pallr
semantic tableau of : : _ r

g _'-' A formula o 1s sald to be unsattsf able 1f a tableau w1th root aisa contradlctory tableau 5

e If'we obtam a contradlctory tableau w1th root ~tx ‘we say that the formula a is tableau provit

: : Altematwely, a formula ais said to be tableau pmvable (clenoted by I- @) if a tableau with roat+
£ -.isa eontradletory tableau. - :

* Asetof fo_r_mulae S= 1oy oy <ooo) 'is saidf to unbatisﬁable ifa table_au ':with' 'root (o A oy A

a,) is a contradictory tableau o

* Asetof formulae S = {¢;, az, . an} is satd to be sansﬁable if the formulae in'a set are simult¥

ously true that is, if a tableau for al A 0:2

A A a, has at least one open (or non-contradict”
path i e : _

iy there is a contradlctory tableau from N w:th ~oc as a root.

A formula a 1s sald to be a logzcal conse
: ﬁ'om S Sl

T

% ‘a"lea“PfO"able(' o) thenitis alsovand (=) and vice versa,

Now we consider a few examples to illustrate the tet’minology- discussed above.

www.Jntufastupdates.com 13

Let S be a set of t'ormulae The formula ais satd to be tableau provable from S (denoted by S

sequence of a set S if and only if o is tableau pro|

T

Logic Concepts and Logic Programming 115

Example 4.8 Show thata formulaa: (4 A~B) A (-5 C) is satisfiable.

stion - The semanti %25
Solution Ic tableau for (4 A ~B) A (~B — C) has been drawn in Table 4.12 and we observe that

vo paths in i i .
;hirg)af(& B _i o i:;:littizii:l?] ICI;:“e path is 010§ed, while the other is open. This shows that the formula (4
TR skl T o) ell ord.er to find its model (that is, the interpretation under which the formula
is , 0 all atomic formulae appearing on the open path. Therefore, {A=T,~B=T;C

=T}oraltematively {A=T-B=F- C= 7 ; : : .
o e e > T}isa model under which o is true. We can verify this using truth

Example 4.9 Show that o : (4 A B) A (B — ~A) is unsatisfiable using the tableau method.

Solution It can be proven that ¢: (4 A B) A (B — ~A) is unsatisfiable as shown in Table 4.13,

Table 4.13 Tableau Method for Example 4.9

Description Formula Line number

Tableau root (AAB)A(B->~A) 1
|

Rulel(l) . . . &L Ty TN 2
|
| .

Rule1(2)’ sl 7o 2 308
B 5

: /\A
Rule6(3) ~|B F |
; X {B, "‘"B} X {Aa NA}

Example 4.10 Consider a set S={~A V B), (C— B), (4 V C)} of formulae. Show that Sis unsatisfiable.

Soluti‘on Consider the conjunction of formulae in the set as a root of semantic tableau. We see from
Table 4.14 that such a tableau is contradictory; hence, S is unsatisfiable.

www.Jntufastupdates.com 14

|
116 Aificial Intelligence . -
! le4.10)
bleau Method For Examp
Table 4.14 Tablc Lm
- Formula _ l\'k.
Description ~A VB)A .(C — B) A Vv C)
~ Tableau root ' il :
| ~AV B)
Rule 1 (1) | ’
(€ - B) s
| 4
AVC)
| i
Rule 4 (2) 'Tl
~B |
i o
Rule 3 (4) T ; /\
X As HA /
{ }"__C %
Rule 6 (3) | |
X {C: ”C} X {B) NB}
Example 4.11 Show that a set S= {~(4 V B), (B — (), AV Q} is consistent.
Solution The set S can be shown to be consistent (Table 4.15) as follows:
Table 4.15 Tableau Method for Example 4.11
Description Formula Line numbe
Tableau root ~AVB)AB->C)AAVC) 1
|
Rule 1 (1) ~(AV B) 2
|
(B = C) 3
G v y
s LR TR NL 3
|
eSS
Ru1§3(4) S e
Rule6 (3) X {4, ~A} /\
= s ‘”.f C
o v N
el g
www.Jntufastupdates.com 15

Logic Concepts and Logic Progfamming 117,

gince the tableau of.COI?JunctlfJn of formulae of S has open paths, S is satisfiable. Further, we can construct
2 model for Sby assigning truth value 7'to each literal on open path, that is, {~A =T, ~B=T: C=T } or {4
#F,B""-F,C:T} | ’

--"""-—"_-—-_ H . :
gxample 4. 12 Show that Bis a logical consequence of S = {A—B,A}.

golution Letus include ~B as a root with S in the tableau tree.

Table4.16 Tableau Method for Example 4.12

_______l_)_C_SCl'iPﬁO“ Formula Line number
Tableau root ~B : - 1
Premise 1 A —|> B ’ 2

|
Premise 2 A
_ S
Rule 6 (2) ~A B ' 3
X {A,~A} x{B,~B}

‘We see from Table 4.16 that B is tableau provable from S, that is, ~B as root gives contradictory tableau; thus
Bis a logical consequence of S.

Example 4.13 Show thata: BV ~(4 = B) V~A is valid.

Solution In order to show that eis valid, we have to show that e is tableau provable, that is, the tableau
tree with ~c is contradictory. Table 4.17 shows that a'is a valid formula.

4.7 Resolution Refutation’_in Propositional Logic

nnn&uﬁ§ﬁﬁg§§§wgﬁggggg}wmm;xaz%?ﬁﬁsﬁmﬁma@ﬁssamﬁamﬁﬁﬂgmm

Another simple method that can be used in propositional logic to prove a formula or derive a goal
from a given set of clauses by contradiction is the resolution refutation method. The. term clause
is used to denote a special formula containing the boolean operators ~ _a}'ld V. Apy given fc_mnu_l.a
can be easily converted into a set of clauses. The method to do this is explained later in thlS
section, Resolution refutation is the most favoured method for developing computer-based sys-

tems that can be used to prove theorems automatically. It uses a single inferen.ce rule, w-hich is
known as vesolution based on modus ponen inference rule. It is more efficient in comparison to
' do not need to guess which rule or axiom to

NDS and Axiomati - in this case we
xiomatic system because 1n this ¢a ! lle _
apply in development of proofs: Here, the negation of the goal to be proved is added to the given

et of clauses, and using the resolution principle; it is shown that there is a refutation in the new

www.Jntufastupdates.com 16

118 Artifiqial Intelligence
s one with a positive atom (P) and
¢,

lution rule. Before discussing resﬂlut%

on, we need to identify two clause
Iy

(~P) for the application of reso

set. During resoluti
a formula into a sct of clauses.

with a negative atom .
clauses, let us desribe a method for converting

Table 4.17 Tableau Method for Example 4.13

Description Formula Line nm
Tableau root ~(BV ~A—B)V~4) 1
|
Rule 4 (1) ~B 2
l
~~A—=B)V] 3
Rule 4 (3) ~ [~ (4 — B)] 4 1
.
~ () 5
Rule 5 (5) 4 g
Rule 5 (4) Pl s __ 4B
Rule 6 (7) : I : | B
A . ,|g | - :
X {d,~A} X {B;~B} .~
|

4.7.1 Conversion'ofla Formula into a Set of Clauses

2 ;;(l:i:(t);l’zlc)::;l };3‘}5;2, there are two normal forms, namely, disjunéﬁvé normal Sform (DNF?
using only natural cb(:j;':cchF) A formula is said to be in its normal form if it is con"
conjunction, that is, in th ;ves {~ A, V}. In DNF, the formula is rep'resented as disjunct”
fepre‘s’cﬁted’as ottt E . Lo A v ML) Vo V(L A ALy whereas in CNF|
e junction of disjunction, that is, in the form (Z;; V \‘!}klj Y Ak (L i
Cpe)> where all L, are literals (positive or negative at eV i bamhun® 2 g
given formula as (C; A..... AC;), wh oms). We can easily write the CNF fort'}
a clause. Formally 2 oltisecis d where each Cy (1 < k<) is a disjunction of literals and is?)

ly, a clause is defined aS_a.fO_l'm_llla.of the form (L, B VT) Therefo®

www.Jntufastupdates.com 17

Logic Concepts and Logic Programming 119

given formula is converted to its equivalent CNF as (C,
qothing but a set of each conjunct of CNF, that is;{C;,
p.CV ~B} represents a set of clauses 4 V B,
Jlauses for a given formula can be obtained i

A .. A C)), then the set of clauses is
..., C,}. For example, the set {4 VB, ~A V
~4A V D, and C V ~B. The procedure by which such
s discussed in the following subsection.

47.2 Conversion of a Formula to its CNF

Any formula in propositional logic can be easily transformed into its equivalent CNF representation

by using the equivalence laws described below. The following steps are taken to transform a
formula to its equivalent CNF.

w T e

R S

. Use DcMorgan _’.s L{_:;W_s _;tq puSh f-?'_(nég_atio_n) immediately Ibef(.J.'re thé_albmic fonnula
L sBe s A
: ~u VB)E#-_*A Nepi
o Use dlstnbutwe lawtoget C(NE .
; ’. e '.: AV(B A 0= (A V'B)-A '(A v C)
o Ehmmate—) and <—>by uéing'thc following” equivalence laws:
L A B ANV B et

The method of conversion will become clearer with the help of the following examples:

Example 4,14 Convert the formula (~4 — B) A (C A ~A) into its equivalent CNF representation.
Solﬁtion The ”given form.lrll.a (—;A — B) A (C A ~A) canbe transformed into its CNF representation in the
following manner:
(4 >BYA(CA~A)=((~A)VBACA ~A)
e =(AVB)A(CA~4)
ST Sy B A QA .
M@Seé in this case is written as {(4 V B), C “A}

{as~A — B=(~4) V B}
{as ~(~A) =A}

www.J ntufastﬁ pdates.com 18

120 Attificial Intelligence

ution of Clauses _
pair of literals, if any, from

olved by eliminating complementary pait !
of the remaining literals in both the clauses. Therefm';

entary pair of literals (L, ~L}, then these clauseg mrr,
and ~L from C, and constructing a new clayge ba;.
disjunction of the remaining literals in C, and C,. This new clause is called resolvent of C, anq
The clauses C; and C; are called parent clauses of the resolved clause. The resolution tr, i-

_ lvent, which is generated as a pay Gf!

inverted binary tree with the last node being a resolven]
resolution process. The process of resolution of clauses will become clearer with the help

following examples:

4.7.3 Resol

Two clauses can be 1es lim
new clause i8 constructed by disjunction

two clauses C; and C, contain a complem
resolved together by deleting L from C;

Example 4.15 Find resolvent of the clauses in the set (AVB,~AVD,CV~B}. i
Solution ~The method of resolution is shown in Fig. 4.1. |
AV B ~AVD ; cv~B
{A, ~A}
C V D (resolvent)
Figure 4.1 Resolution of clauses of Example 4.15
We can clearly see that C V D is a resolvent of ihe.set‘ {A V B,~AV D, CV ~B} ‘

Now that we are familiar with the resolution process,' we can. Staté a. few r 1t
. esults.

e I Cisa resolvent of two clauses

< clai}sés 1 Ci C,). This:is known as

o If a contradicti i S e R 153
b eaid to bradlctlm‘l (Qr an cmP ty : 91-‘?“56)' ..?-'_'deri_ve from a set S of cl
: [unsarzsﬁable_,r Deﬂvatioﬁ“6'f"66:l'1.ti'ﬁdi¢'ti6' f ;C auses using

resoluion réfutation of S L L ks e 0 o

by resolution

7 c'ause Cls said to be a logical consequence of § if C is derived fr

www.Jntufastupdates.com 19

Logic Concepts and Logic Programming 121

e e 416 Usi :
Example 4. Sing resolution refutatj o .
={AVB,~AVD,CV-B), 1on principle show that C V D is a logical consequence of

Solution To prove the statement, first we will add
~(CVD)=~CA~DtothesetSto get & = (AV B add ne

is unsatisfiable by deriving contradiction using the r

gation of the logical consequence, that is,
~A V-D, CV ~B, ~C, ~D}. Now, we can show that §’
esolution principle (Fig. 4.2).

AVB ~AVD Cv-~B ~C '_D
BVD {B~B} :
\k /
_ CVDQ
o%}‘
. . { X

Figure 4.2 Resolution of Clauses for Example 4.16

Since we get contradiction from §’, we can conclude that (C V D) is a logical consequence of
S={AVB,~AVD,CV ~Bj.

4.8 Predicate Logic

I3 EREBNEEERERURARERREOORNBAREBE R PRI RERDE R YRR

ERydamuanRs
In the preceding sections, we have discussed about propositional logic and various methods that
can be used to show validity, unsatisfiability, etc., of a given proposition or a set of propositions.
However, propositional logic has many limitations. For example, the facts John is a boy, Paul is a
boy, and Peter is a boy can be symbolized by A, B, and C, respectively, in propositional logic but
we can not draw any conclusions about the similarities between A, B, and C, that is, we cannot

‘conclude that these symbols represent boys. Alternatively, if we represent these facts as
boy(John), boy(Paul), and boy(Peter), then these statements give prima facie information that
John, Paul, and Peter are all boys. These facts can be easily generated from a general statement
boy(X), where the variable X is bound with John, Paul, or Peter. These facts are called instances
of boy(X), while the statement boy(X) is called a predicate statement or expression. Here, boy is
a predicate symbol and X is its argument. When a variable X gets bound to its actual value, then
the predicate statement boy(X) becomes either true or false, for example, boy(Peter) = true,

boy(Mary) = false, and so on.

Further, 'éfatements like Ajz birds fly cannot be represented in_ propositio'nal logic. Suc}l.linﬁtatiops
are removed in predicate logic. The predicate logic is logical extension of proposmonflﬂ lclbglc,
Whlch ﬁieeﬂs with ﬂle"v Jidity, SaﬁsﬁabilitYs and u_nsat.lsﬁabllllty (mconsmtcr_lcy) of a formula a_ ong
With the 'ihférence‘rﬁles‘fof'derivation of a new formula. Predlcatc calculus 18 th.e study (?f predicate
SYStemg; Wﬁen inference rules are added to predicate calculus, it becomes predicate logic.

www.Jntufastupdates.com 20

122 Arificial Intelligence

4.8.1 Predicate Calculus

Predicate calculus has three more lo
described as follows:

gical notions in addition to propositional calculus. The,

e, or constant or n-plaee functton A funcrzon is def‘
-place function is written as f(t), ..., 1) “h}

i I M

A rerm 1s deﬁned as etther a vanabi

Term
rms to a single term. An 7

as'a mappmg that maps 1 te
I . [pare terms. : .
Predlcate A pred:care is deﬁned as a relation that maps » terms {0 a truth value {frue, false},

Quanttfiers - Ouannf Gers are used with variables; there are two. types of quannﬁers Ny

umversal qua rzﬁ 2 -V-'(for all) and ex:srenrral quantgf‘ iers, EI (there eusts)

We can denote the variables by uppercase letters X, Y, Z, ... wh_ile _predncate symbols ¢y
denoted by the letters p, g, , ... In most of the cases, constants are individuals or concepts y;
can be denoted by 6, ‘john’, etc Functions, on the other hand, may be represented by lowe,|

letters such as f; g, A, etc. .
Well-formed formula In pl‘edlcate calculus well- formed formula (or simply formy
defined as follows:

- Atomtc formula p(t1 o tn) (also called an atom) 1s a well-formed fonnula where p 1S a predi
symbol and f;, ..., 1, aretheterms ! : -
b '_- Ifotand B are well-formed formulae then ~(a) (o:V ,3) (aA ,B), (a-—> ﬁ), and (a<—>) are v
3 ~ formed formulae.

5'01' ._If o is a well-formed fommla andX isa ﬁ'ee vartable in o, then (VX)tz and (ElX)rx are both v
s formed formulae. Here orisin seope of quanttﬁer V or El Scope of the vanableX 1s deﬁned asth.l

;Ll;statement Peter !oves ‘his son is represented as' love(“Peter. .son(“Peter”
ctton that maps Peter to hts son and Iove is a predtcate name wluch takes- ;

www.Jntufastupdates.com 21

Logic Concepts and Logi i

: gic Programming 123
4.8.2 First-Order Predicate Calculus g
If the quantification in predicate fo
functions then it is called first-orde

is over ﬁr%-order predicates and fy d
g i _ order predicate calculus. F
example, VP (p(X)) & p(Y)) is a second-order predicate statement, whereas V.X VY (fvl(‘;') g

Ny - C
p(Y)) 1s a furst-order predicate statement. Similarly, higher order predicate calculus allows quan-

tification over higher types. Since we wi :
— will not be ith hi :
e it 56t deinla dealing with higher order predicates presently,

mula j i i
. a.lS only on simple variables and not on predicates or
Predicate calculys. Op the other hand

! . if the quantification
nctions, then it becomes second- !

Ther:isr:;d(_)riig p;;rc::;alte c.alculus. 15 a formal language in whic'h a wide variety of statements are
expresse ae In predicate calculus are formed using rules similar to those used in
propositional calculus. When inference rules arc added to first-order predicate calculus, it
becomes ﬁ?‘lst-:()rder predicate logic (FOL). Using inference rules, one can derive new forrnu,lae
from the existing ones. In the following subsection we will describe interpretation of predicate
formula which is quite different from interpretation of propositional formula.

4.8.3 Interpretations of Formulae in FOL

In propositional logic, an interpretation simply refers to an assignment of truth values to atoms.
Since variables are involved in FOL, we need to do more than a simple assignment of values. An
interpretation of a formula ¢rin FOL is not just restricted to assigning truth values; it consists of a
non-empty domain D and involves assignment of values to each constant, function symbol and
also an assignment of truth values to each predicate atom. Each formula o is evaluated to be true

or false under a given interpretation / over a given domain D.

The following results hold true for any interpretation I over a domain D:

e

fre if and only if p(¥) = e, VX € Dotherisc itis false. '
frue it and only if 3 ¢ € D such that ()= true, otherwise it is false.

Example 4.17

3 (D Ev s s atue of anFOL formulﬁ o (VX) @D p&X, Y) under the following interpretation I
U eD={,2) i
e p(1, 1) =F,p1,=T.p2 D= 5 P(z’_ -

g d false by F.
Solu_mm “'Let us denote true by T an J y true under interpretation 1.

2,then3 1 e D such that p(2, 1) = 7. Hence, s

www.Jntufastupdates.com 22

124 Aificial Intelligence

(i) Evaluate ot: (VX) [p(X) = q(/(X), c)] under the following interpretation:
e D={1,2}
e ¢=1(cisaconstant from the domain D)
* fD)=2,/@)=1 ...
o p()=F,p)=T
e g(1,1)=T,q(1,2)=T1,92,1)=F,q2,2)= T

Solution ForX=1
p1)—= g, H=p() = ¢(2, D=F = 4(2, D=7,

ForX 25 .
P90 1)~p(2)->q(1 1) T q)=T—T=T

We can easily say that a is true for all values of XeD under thc mterpretatlon I

4.8.4 Satlsflablllty and Unsatlsflablllty in FOL
To study FOL in detail we need to be fa_rmllar with the followmg deﬁmtlons for a given formyl;

__"xff such tllata!

L} Lf'and only i
: uatcd to be me

every mterpretatlon I lf cx]

i T R i e

Since there are finite interpretations in pmposntlonal logic, it is posmble to verify vali
satisfiability, and unsatisfiability of a formula; however, in FOL, there are infinite numbé
domains and consequently infinite number of interpretations of a formula. Therefore. i b1
possible to verify validity and unsatisfiability of a formula by evaluating it under infinite in mi
tations. We can easily solve this problem in predicate logic by using resolution refutation mﬁtl
which is similar to propositional logic. In this method, we work with clauses simil?
propositional logic; however, obtammg clauses in FOL is not as Stl'alghtforward as it is in
- of propositional logic, where we convert a given formula to its equivalent CNF notatiot:
conjunct of which is a clause. In addition to DNF and CNF notat:lqons tfnlelre is anlrljj;)her no

called the prenes normal form (PNF) which is used for obtammg clauses from an FOL for

il R s s A v

www.Jntufastupdates.com 23

Logic Concepts and Logic Programming 125

4.8.5 Transformation of a Formula into Prenex Normal Form

A formula is said to be in closed form if all the variables appearing in it are quantified and there are
no free variables.

prenex Normal Form A closed formula ¢ in FOL is said to be in PNF if and only if o is
represented as (0 X)) (0, X)) ... (Q, X,) M, where Q, are quantifiers (V or 3), X, are variables,
for 1 <k<n, while Mis a formula free from quantifiers. The list of quantifiers [(Q; X)) ... (©,X,)]
is called prefix and M is called the matrix of a formula . Here, M is assumed to be represented
in CNF notation. For example, (3X) (VY) [p(X) V g(X, Y)] is in PNF notation, whereas (V.X)
[pX) — (3Y) g(X, Y)] is not in PNF notation.

conversion of Formula into PNF Notation

A formula can be easily transformed or converted into PNF using various equivalence laws. The
following are some of the conventions that will be used to understand the concept clearly:

FOL formula arwithoutavariable X
FOL formula -which contains avariable X

Quantifier (Vo). ioies e

Equivalence Laws
Although a number of equivalence laws of propositional logic have been studied earlier, the
following pairs of logically equivalent formulae need to be discussed in addition. Here, the

symbol * represents A or V.

Law 1 (QX) o [X] * B=(QX) (@[X]* B)

Law2 o * (OX) B[X] = (OX) (a* BIXD)

Law3 ~(VX) o [X] = (3X) (~x [X])

Law 4 ~(3AX) a [X] = (VX) (~x [X])

Any formula that does not contain X can be brought into the scope of the quantifier Q on X,
Therefore, the first two equivalences hold true; these equivalences can be easily proved. Let us
prove the last equivalence for the sake of clarity.

Result ~@x) o [X] = (V.X) (~a[X])

Proof Let /be any interpretation over adom

we have to prove that ~(3X) & [X] is true if an
domain P .

ain D. To prove the equivalence law ~@X)a[X] = (VX Y~et[X]),
d only if (VX) (~a [X]) is true under any interpretation / over any

Letug aSSllfne-that ~@AX) a[X] is true under I over D and prove that (VX) (~x[X])is al.so frue upder 1 overl
D.Since ~@x) [X] is frue (assumption), it implies that there does not exist any X for which a[X]is true, thgl

18, for all x; alX]is false.

www.Jntufastupdates.com 24

128 Artificial Intelligence

A fonnula ais sald to ‘be unsansf able if and only if its COHGSPondmg set Si IS unS“msﬁable
S is said to be unsatisfi ab!e if and only if there 3 no 1nterpretatmn that sansﬁes all the Clﬂllse

snmultaneously

~ Sissaid to be satisfiable if and only if each cl
all the clauses of § simultaneously.
Alternauvely, an mterpretauon I 1s sald to mo

ause is satisfiable, i.e., 3 an interpretation tha sty

del S if and only 1f I r_‘go_dellls each clause of §

4.8.8 Resolution Refutation Method in FOL

Resolution refutation method in FOL is used to' test ‘unsatisfiability of a set (S) of e
corresponding to the predicate formula. It is an extension of the resolution refutation -
described earlier for propositional logic. A deduction of a contradiction froma set S of CIauJ
called a resolution refutation of S. The resolution principle basically checks whether a CDnlr}
tion is contained in or derived from S.

Resolution for the clauses containing no variables is simple and is similar to that i
propositional logic, but it becomes complicated when clauses contain variables. In suchc
before resolution, two complementary literals are resolved after proper substitutions so tha{tl
the literals have same arguments. Let us consider the following example:

Example 4.19 Find the resolvent of two clauses CL, and CL,, where p, g, and r are pri.
symbols, X is a variable and fis a unary function. -

CL, =p(X) V q(X)
CL, = ~p(f (X)) V r(X)

Solution If we substitute f(a) for X in CL . ‘ . . ¢
Fiosm P f(a) - C 1 and a for X in CL,, where a is a new constant from the 0%

CLy= p(f(@) V q(f (a))
CLy= ~p(f (@) V r(a)

We observe that ‘ |
e by t:ki c:zti:: d(;‘;qu sz:l CL4fhlave clomplementary literals as p(f (a)) and ~p(f(a)). The rcsgh'.
4 1on of literals from parent cl
literals. Therefore, we get resolvent of CL,, and CL4pas CLC a;z:{ij)ﬁsr e(1 “)m“atmg b Comple"
r(a

Here we notice that CLyand CL, do not have
genera] if we substitute - FX) forXin CL
1

CLi=p(fX) V q(f(x)

variables. These are called ground instances of CL; and ¢
then we get another clause as follows

 Then, CL’ = Resolvent (CL/, CL) = [é‘(‘)":(X)I)'v' r.'(X)'l'

www.Jntufastupdates.com | 25

130 Artificial Intelligence

Ap As the first step, choose a clause from the negated goal clauses as one of the parents to be rg Oy
this is done because the contradlcuon if it exists, might be occurring due to the goal we are try

~ prove.

s Use the resolvent for further resolutlon with an ex1st1ng clause. Both the clauses S
contain one pair of complementary literals, if possible. If parent clauses contain more than One |
of complementary literals, then resolvent is always true.

- If such clauses do not exist, then rcsolve any pair of clauses thdt may contain complemm
literals,
¢ Resolve using clauses w1th a smgle lltcral whcnever poes1ble Such resolutions generate ney Cla

with fewer literals than the larger of thelr parent clauses, thus, the algonthm may most prh'j
terminate faster. - - . .

. Ellmmate tautologles as 5

I
|
I
|

regenerated i

Example 4.20 Show that the formula & : (VX) (p(X) A ~[¢(X) — p(X)]) is unsatisfiable.

Solution To prove the above statement, we need to convert ¢ into a set of clauses with the b
equivalence laws.

P A ~[g(X) = p(X)] = p(X) A ~[~g(X) V p(X)]
=p(X) A~ ~q(X) A ~p(X)
=p(X) A qg(X) A ~p(X)

The set of clauses is written as S = {p(X), ¢(X), ~p(X)}. Since there is a contradiction in S itself [becus
~ p(X) and ~p(X)], § is unsatisfiable and consequently ¢ is unsatisfiable.

B

www.Jntufastupdates.com 26

